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Q. What is this talk about? 
 

We will import 2 sources of Environmental Protection Agency (EPA) data into a 
custom Drupal site.  We’ll go beyond traditional web scraping by using an LLM to 
analyze and supplement the scraped data. 

Q. Why would we want to do this? 
PDFs and websites are valuable but unstructured (from our point of view) sources 
of data.   Drupal, on the other hand, is all about structured content.  LLMs help us 
add value over and above what the EPA provides:  get better summaries, extract 
legal citations, get penalty info and assign categories based on our own taxonomy. 



Q. How do we import the data and in what form? 
• Import - there are many ways to bring content into Drupal, among others 

webhooks and the Migrate and Feeds modules.  Feeds are a simple way to 
automate routine, scheduled imports and they have an intuitive UI. 

• Data format - JSON is easy to read by both humans and machines.  LLMs also 
like it.  

 

Q. What are our data sources? 
One site we’ll be sourcing has an API while the other requires some web scraping. 

  



Case Study #1 – Federal Register 
 

 



 

 

 

 

 

 

 

 

Site:  https://federalregister.gov 

Background:  This is where the U.S. government 
publishes all proposed federal regulations or rules 
about to go into e;ect.  The site has an excellent UI 
and is also known for its developer-friendly API and 
JSON output. 

Goals:  connect to Federal Register API and get 
JSON metadata for recently-published rules.  Then: 

• Make minor transformations to their field 
data for our matching fields in Drupal, e.g. 
prepending a citation to their title to match 
our Drupal node title best practices 

• Add 3 LLM-generated summaries individually 
focused on the needs of:  1) high school 
students, 2) corporate lobbyists, 3) 
environmental activists. 

 

https://federalregister.gov/


Federal Register processing pipeline 
High level overview of the data processing game plan: 

 



Inputs and Outputs 
 

 

 

 

 



 

Case Study #2 – Civil Enforcement Ac@ons by the EPA 
 



 



 



 

Site:  https://www.epa.gov/enforcement/civil-and-
cleanup-enforcement-cases-and-settlements 

Background:  Centralized source for EPA civil 
actions for violations.  The EPA [historically] 
enforces a wide range of environmental laws, 
including the Clean Air Act (CAA) and Clean Water 
Act (CWA). 

Goals: 

• Better summaries 
• Extract penalty info 
• What specific laws were violated? 
• Categorize environmental issues 

  

https://www.epa.gov/enforcement/civil-and-cleanup-enforcement-cases-and-settlements
https://www.epa.gov/enforcement/civil-and-cleanup-enforcement-cases-and-settlements


Inputs and Outputs 
 

 



 

LLM considerations 
 

Closed models, open source – they’re constantly leapfrogging one another.  At 
present, closed source foundation models produce more reliable structured 
output.  This may change in the future. 

 

The code here has options for OpenAI’s “gpt-4o”, Anthropic’s "claude-3-7-sonnet-
latest" and Google’s “gemini-2.0-flash”.  Currently we default to Gemini Flash 
because it is fast, reliable, inexpensive (as of March 2025:   input $0.10 / 1,000,000 
input tokens, $0.40 / 1,000,000 output tokens) and has a long context window 
(1,000,000 tokens) that can readily accommodate multi-hundred page PDFs. 

Optimization – a custom title_exists() function checks to see if we already have 
a node in Drupal, saving on unnecessary LLM calls 
 

 



Pydantic and Instructor 
 

Pydantic and Instructor are Python libraries that work together to:  a) tell LLMs how 
you want their reply to be structured, e.g. JSON with certain fields and types of data; 
b) validate the data before passing it on for downstream use.  In particular, we want 
anything GenAI-related to pass muster before we import it to our Drupal CMS. 

 

You define a “data model” and Pydantic helps ensure that it’s followed, e.g. that 
certain fields must be present or are merely optional.  You can also defined custom 
validation methods. 



 



 

Pydantic Field validators 
 

These are optional functions you can write that automatically run against fields 
before Pydantic signs od on the data.  You can use them to simply confirm that data 
matches certain criteria, or you can modify the data to conform your needs.  The 
point is that this is a structured way of enforcing standards for your data. 

 

What we’re choosing to validate: 

• citation – make sure legal citations are in a standardized format, e.g. 40 C.F.R. 
§§ Part 1039" should be transformed to "40 C.F.R. § 1039 

• penalty – make sure it’s a numeric float with at most 2 decimal places 
• environmental_issues – suppose we have a Drupal taxonomy we’re already 

using.  We can fetch the terms dynamically from the Drupal DB and use them 
both to tell the LLM what terms we want it to look for and then to make sure 
that’s what it did. 



Miscellaneous “Best Prac@ces” 
 

There are few “standards” yet for how websites should manage AI-generated 
content.  You may want to consider: 

 

• Creating a vocabulary “AI Tags” to help you keep track of nodes to which you’ve 
applied GenAI.  For example:  AI-Generated Text, AI-Generated Categories, or 
AI-Generated Entity Extraction 

• It is quite likely that you’ll use diderent LLMs over time.  You may want to have a 
vocabulary for these as well with terms such as:  claude-3-7-sonnet-latest, gpt-
4o, gpt-4o-mini, gemini-2.0-flash 

• If you’re going to the trouble of extracting lots of raw text for use in GenAI, even 
though in its raw state it may not be suitable for end users it might be good for 
a) fulltext search; b) future GenAI passes over the same nodes 

• People are justifiably wary of what’s being pushed on them – consider including 
preamble / info text such as “This article contains an AI-generated summary” 
that fully informs people what they’re getting. 


