

Enhancing Drupal Data Imports with LLMs

Jeremy Barth - https://github.com/criolho/Drupal-Feeds-Using-LLMs

Q. What is this talk about?

We will import 2 sources of Environmental Protection Agency (EPA) data into a
custom Drupal site. We’ll go beyond traditional web scraping by using an LLM to
analyze and supplement the scraped data.

Q. Why would we want to do this?
PDFs and websites are valuable but unstructured (from our point of view) sources
of data. Drupal, on the other hand, is all about structured content. LLMs help us
add value over and above what the EPA provides: get better summaries, extract
legal citations, get penalty info and assign categories based on our own taxonomy.

Q. How do we import the data and in what form?
• Import - there are many ways to bring content into Drupal, among others

webhooks and the Migrate and Feeds modules. Feeds are a simple way to
automate routine, scheduled imports and they have an intuitive UI.

• Data format - JSON is easy to read by both humans and machines. LLMs also
like it.

Q. What are our data sources?
One site we’ll be sourcing has an API while the other requires some web scraping.

Case Study #1 – Federal Register

Site: https://federalregister.gov

Background: This is where the U.S. government
publishes all proposed federal regulations or rules
about to go into e;ect. The site has an excellent UI
and is also known for its developer-friendly API and
JSON output.

Goals: connect to Federal Register API and get
JSON metadata for recently-published rules. Then:

• Make minor transformations to their field
data for our matching fields in Drupal, e.g.
prepending a citation to their title to match
our Drupal node title best practices

• Add 3 LLM-generated summaries individually
focused on the needs of: 1) high school
students, 2) corporate lobbyists, 3)
environmental activists.

https://federalregister.gov/

Federal Register processing pipeline
High level overview of the data processing game plan:

Inputs and Outputs

Case Study #2 – Civil Enforcement Ac@ons by the EPA

Site: https://www.epa.gov/enforcement/civil-and-
cleanup-enforcement-cases-and-settlements

Background: Centralized source for EPA civil
actions for violations. The EPA [historically]
enforces a wide range of environmental laws,
including the Clean Air Act (CAA) and Clean Water
Act (CWA).

Goals:

• Better summaries
• Extract penalty info
• What specific laws were violated?
• Categorize environmental issues

https://www.epa.gov/enforcement/civil-and-cleanup-enforcement-cases-and-settlements
https://www.epa.gov/enforcement/civil-and-cleanup-enforcement-cases-and-settlements

Inputs and Outputs

LLM considerations

Closed models, open source – they’re constantly leapfrogging one another. At
present, closed source foundation models produce more reliable structured
output. This may change in the future.

The code here has options for OpenAI’s “gpt-4o”, Anthropic’s "claude-3-7-sonnet-
latest" and Google’s “gemini-2.0-flash”. Currently we default to Gemini Flash
because it is fast, reliable, inexpensive (as of March 2025: input $0.10 / 1,000,000
input tokens, $0.40 / 1,000,000 output tokens) and has a long context window
(1,000,000 tokens) that can readily accommodate multi-hundred page PDFs.

Optimization – a custom title_exists() function checks to see if we already have
a node in Drupal, saving on unnecessary LLM calls

Pydantic and Instructor

Pydantic and Instructor are Python libraries that work together to: a) tell LLMs how
you want their reply to be structured, e.g. JSON with certain fields and types of data;
b) validate the data before passing it on for downstream use. In particular, we want
anything GenAI-related to pass muster before we import it to our Drupal CMS.

You define a “data model” and Pydantic helps ensure that it’s followed, e.g. that
certain fields must be present or are merely optional. You can also defined custom
validation methods.

Pydantic Field validators

These are optional functions you can write that automatically run against fields
before Pydantic signs od on the data. You can use them to simply confirm that data
matches certain criteria, or you can modify the data to conform your needs. The
point is that this is a structured way of enforcing standards for your data.

What we’re choosing to validate:

• citation – make sure legal citations are in a standardized format, e.g. 40 C.F.R.
§§ Part 1039" should be transformed to "40 C.F.R. § 1039

• penalty – make sure it’s a numeric float with at most 2 decimal places
• environmental_issues – suppose we have a Drupal taxonomy we’re already

using. We can fetch the terms dynamically from the Drupal DB and use them
both to tell the LLM what terms we want it to look for and then to make sure
that’s what it did.

Miscellaneous “Best Prac@ces”

There are few “standards” yet for how websites should manage AI-generated
content. You may want to consider:

• Creating a vocabulary “AI Tags” to help you keep track of nodes to which you’ve
applied GenAI. For example: AI-Generated Text, AI-Generated Categories, or
AI-Generated Entity Extraction

• It is quite likely that you’ll use diderent LLMs over time. You may want to have a
vocabulary for these as well with terms such as: claude-3-7-sonnet-latest, gpt-
4o, gpt-4o-mini, gemini-2.0-flash

• If you’re going to the trouble of extracting lots of raw text for use in GenAI, even
though in its raw state it may not be suitable for end users it might be good for
a) fulltext search; b) future GenAI passes over the same nodes

• People are justifiably wary of what’s being pushed on them – consider including
preamble / info text such as “This article contains an AI-generated summary”
that fully informs people what they’re getting.

