
Editoria11y:
Beyond the Basics

John Jameson • DrupalCamp NJ 2025

1. The basics

a. How we got here

b. What could go wrong?

c. Configuration tips

2. Using JS events

3. Custom tests

Proofreading:
4,000 years of hard-won knowledge, manually applied

Writing board, Middle Kingdom. ca. 1981–1802 B.C. On display at The Met

https://www.metmuseum.org/art/collection/search/544319

Web Content Accessibility Guidelines:
26 years of hard-won knowledge, manually applied

Writing board, Middle Kingdom. ca. 1981–1802 B.C. On display at The Met

Needs to be a
<button> tag

Needs more
contrast

Doesn't
reflow for
mobile

https://www.metmuseum.org/art/collection/search/544319

The accessibility
challenge:

QA dashboards
are powerful but
manually visited.

QA checkers
are powerful but
manually run.

Editoria11y
(and Adam
Chaboryk's Sa11y)

automate
checking with
tips written in
plain(ish)
language.

● Meaningless links

● Fake lists

● Fake headings

● Heading outline gaps

● Images with no alt text

● Images with suspicious alt text

● Table heading issues

● Links to PDFs

● Video/audio/dataviz
alternatives

● LARGE QUANTITIES
OF CAPS LOCK

~28 built-in tests focus on content alone

…plus some
manual tools

Heading

visualizer…

Alt text
visualizer…

Dismissed
alerts can be
reviewed and
restored

Results are
synced into the
Drupal reports
tab

Sounds great!

What could possibly go wrong?

Sometimes
sites need
config to
prevent
overload

Sometimes
sites need
helper code
to reveal
hidden tips

And
sometimes I
need to find
time to
rewrite test
logic after
receiving a bug
report that "The
module is
incorrectly
flagging our web
component as
having empty text"
[because someone
found a new and
interesting way to
combine and nest shadow
DOM and slot templates I
didn't foresee so my abbreviated
version of the accessible name ca lculation
can't detect the nested heading text.

Most sites are turnkey on install.

Deep breath.

Let's install &
configure

Config page suggest starting with permissions.

Some are automatic, some are not.

x

x

var editoria11yOptionsOverride = true;

var editoria11yOptions = function (moduleOptions) {

let options = moduleOptions;

options['cssUrls'].push('/modules/EXAMPLE/example.css');

return options;

}

You can also
override
options at
runtime to
add custom
CSS

Decide how annoying you want to be

Decide what to check

Let's say we want to ignore an alert in the footer ON EVERY PAGE…

Only check editable content:

These approaches will both work:

Ignore a specific tag:

main, .footer-editable-contentfooter .logo-image

…but the second will run faster.

<nav>

<a href="https://example.com"
class="nav-link link-purpose">

EXAMPLE LINK

(Link is external)

So choose carefully:

nav .link-purpose

nav a (less specific)

.link-purpose (not specific)

slower…
nav a[href^="https:"]

dangerously slow:
nav a:has(.ext-icon)

Ignores have to run against every matched tag

Last thought on check roots:

Watch for nested roots.
You'll get duplicate results and your computer
fan will be audible from orbit.

main, .column-2

The module ships with some default ignores

● Paragraphs in tables

● Headings in navigation

● Alts on aria-hidden images

● Links not in the tab index

● Tables with role="presentation"

Plus the admin
UI elements –
open a bug if I
missed any.

* #toolbar-administration *

h .filter-guidelines-item *,

[id$="-local-tasks"] *,

.tabledrag h4,

.block-local-tasks-block *

a [id$="-local-tasks"] a,

.filter-help > a,

.block-local-tasks-block a,

.contextual-region > nav a

table .tabledrag

form[id^="node-"] #edit-body-wrapper .ck-content

#edit-accordion-wrapper .ck-content, #add-accordi

Hide the checker in chosen contexts

#news-search-page, .user-251

.contextual-region a[href*="/edit"]

Turn off checker while editing anything, not just
specific forms listed above…

Various settings to
make sure the link
text tests are
aware of external
link indications.

You can ignore
these if you use
the External Links
or Link Purpose
modules

The controversial "Has this document been
remediated?" test…

You can add more file types, or turn off the
test altogether by setting its selector to
"false"

#klaro_toggle_dialog

You made it!
Deep breath.

Now for the fun stuff.

document.addEventListener(

'ed11yPop', e => {

// Do something.

}

);

Meet JS
Events

// Most events send "detail" objects.

// e.detail.result.element.classlist.add('open');

// use console.log(e.detail) to explore.

document.addEventListener('ed11yPop', e => {

if (e.detail.result.element.closest(MY-SELECTOR)) {

e.detail.tip.shadowRoot.querySelector(

'.ed11y-custom-edit-links[href$="/edit"]'

)?.setAttribute('hidden', '');

}});

On Tip Pop
example

Test are running:

● ed11yRunCustomTests* (write to Ed11y.results)

● ed11yResults (read from Ed11y.results)

Tip are opening:

● ed11yPanelOpened

● ed11yShowHidden* (result)

● ed11yPop (result, tip, result ID)

* only dispatched if you asked nicely in config

The most
useful
Editoria11y
events

document.addEventListener(

"ed11yPanelOpened", function () {

// Prevent header from sticking.

$('body').addClass('no-stick');

// Open all accordions with results.

$('ed11y-element-result').each(function () {

$(this).parents('.accordion.shut').prev()

.find('.accordion-button').click();

})

}) // (various if statements deleted for code brevity)

On Open

Unstick page
header, open
accordions,
switch tabs…

document.addEventListener(

'ed11yShowHidden', function(e) {

const result =

$(`[data-ed11y-result="${e.detail.result}"]`);

if (result.parents('.accordion.shut').length > 0) {

result.parents('.accordion').prev()

.find('.ps-accordion-item-button').click();

}

}, false);

Show Hidden

Make sure the
result is visible
before the tip
draws

.accordion, .tabs, .carousel

Writing custom tests

The coolest
custom test
I've seen
from a user
so far…

(remember to add 1 to the
count of custom tests on
the config page):

1. Find issues

2. Tell Editoria11y what you want in your tip

3. Tell Editoria11y about your issues

4. Tell Editoria11y you're done

Custom tests
take 4 steps

Ed11y.findElements() is an optional helper that only selects

using your checkroot / ignore config.1:
Find issues

document.addEventListener(
'ed11yRunCustomTests', function() {

Ed11y.findElements(
'notInTable', // name your list
'table .widget' // any CSS selector

);

Ed11y.elements.notInTable?.forEach((el) => {
// further filter the list as needed

})

2:
Add your tip
title and
content to
Ed11y.M

Ed11y.M.notInTable = {
title: 'Widgets do not belong in tables',
tip: () =>

` <p>Don't put our custom widgets in
tables. They asplode on
mobile.</p>

`,
};

To create a dismissable "Manual Check," use Ed11y.dismissalKey() to

create an identifier based on something unique-ish in the element – text
or attributes or HTML.

Otherwise return dismissalKey: false .

3:
Add each issue
to
Ed11y.results

Ed11y.elements.notInTable?.forEach((el) =>
Ed11y.results.push({

element: el,
test: 'notInTable',
content: Ed11y.M.notInTable.tip(),
position: 'beforebegin',
dismissalKey: Ed11y.dismissalKey(el.textContent),

})
})

4:
Announce that
you are
finished

let allDone = new CustomEvent('ed11yResume');

document.dispatchEvent(allDone);

Some more things
on the roadmap…

1. Bugfixes!
From typos and performance
issues to quirks in the hidden
element detector…the live-editing
rewrite left a lot of loose ends.

2. GUI to enable/disable tests. (thanks

again for the MR @nmillin)

3. Backend rewrite to support the
dashboard initiative – Views-ready
references to nodes, terms and
users in the result tables.

Fin.

Module: drupal.org/project/editoria11y

Library: editoria11y.princeton.edu

Me: drupal.org/u/itmaybejj

	Slide 1: Editoria11y: Beyond the Basics
	Slide 2: Proofreading: 4,000 years of hard-won knowledge, manually applied
	Slide 3: Web Content Accessibility Guidelines: 26 years of hard-won knowledge, manually applied
	Slide 4: The accessibility challenge: QA dashboards are powerful but manually visited. QA checkers are powerful but manually run.
	Slide 5: Editoria11y (and Adam Chaboryk's Sa11y) automate checking with tips written in plain(ish) language.
	Slide 6: ~28 built-in tests focus on content alone
	Slide 7: …plus some manual tools
	Slide 8: Alt text visualizer…
	Slide 9: Dismissed alerts can be reviewed and restored
	Slide 10: Results are synced into the Drupal reports tab
	Slide 11: Sounds great! What could possibly go wrong?
	Slide 12: Sometimes sites need config to prevent overload
	Slide 13: Sometimes sites need helper code to reveal hidden tips
	Slide 14: And sometimes I need to find time to rewrite test logic after receiving a bug report that "The module is incorrectly flagging our web component as having empty text" [because someone found a new and interesting way to combine and nest shadow DOM
	Slide 15: Deep breath.
	Slide 16: Let's install & configure
	Slide 17
	Slide 18
	Slide 19: You can also override options at runtime to add custom CSS
	Slide 20
	Slide 21
	Slide 22
	Slide 23: These approaches will both work:
	Slide 24: Ignores have to run against every matched tag
	Slide 25: Last thought on check roots: Watch for nested roots. You'll get duplicate results and your computer fan will be audible from orbit.
	Slide 26: The module ships with some default ignores
	Slide 27: Plus the admin UI elements – open a bug if I missed any.
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: You made it! Deep breath. Now for the fun stuff.
	Slide 39: Meet JS Events
	Slide 40: On Tip Pop example
	Slide 41: The most useful Editoria11y events
	Slide 42: On Open Unstick page header, open accordions, switch tabs…
	Slide 43: Show Hidden Make sure the result is visible before the tip draws
	Slide 44: Writing custom tests
	Slide 45: Custom tests take 4 steps
	Slide 46: 1: Find issues
	Slide 47: 2: Add your tip title and content to Ed11y.M
	Slide 48: 3: Add each issue to Ed11y.results
	Slide 49: 4: Announce that you are finished
	Slide 50: Some more things on the roadmap…
	Slide 51: Fin.

